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Abstract

In this article, we demonstrate a well-established conclusion: when
independent Gaussian noise ε is added to a random variable X, regardless
of the distribution ofX, discrete or continuous, deterministic or uncertain,
the resulting random variable X + ε will be absolutely continuous and
possess a density function.

1 Preliminaries

Proposition 1. Let (Ω,F , P ) be a probability space. Let X : (Ω,F) → (X,X )
and Y : (Ω,F)→ (Y,Y) be random variables. If X and Y are independent, then
the joint law of X and Y , i.e. P(X,Y ), equals the product measure PX×PY , where
PX := P ◦X−1 is the push-forward measure of X, and similarly for PY .

Proof. For any rectangle R ∈ {A×B : A ∈ X , B ∈ Y},

P(X,Y )(R)

= P (X ∈ A, Y ∈ B)

= P (X ∈ A)P (Y ∈ B) Independence of random variables

= PX(A)PY (B)

= (PX × PY )(R) Product measure of rectangles

Thus, P(X,Y ) and PX × PY coincide on the set of rectangles. Then by the
existence and uniqueness of product measure, they must agree on the entire
product space (X× Y,X × Y).

Definition 2 (Absolute continuity definition sketch). Let µ and π be two mea-
sures on Borel subsets. If for avery π-measurable set A, π(A) = 0 entails
µ(A) = 0, then we say µ is absolutely continuous w.r.t. π, or µ is dominated by
π, denoted µ� π.
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Definition 3 (Translation-invariance of measure). Let µ be a measure on (Ω,F).
If for every A ∈ F and x ∈ Ω such that A− x := {y ∈ Ω : x+ y ∈ A} ∈ F , we
have µ(A) = µ(A− x), then we say µ is translation-invariant.

Remark 3.1. Lebesgue measure is the only non-zero measure up to scaling that
is defined on Borel subsets, finite on compact sets, and translation-invariant.

2 Main Result

Theorem 4. Let (Ω,F , P ) be a probability space. Let X,Y : (Ω,F) → (R,B)
be random variables. Let λ be a translation-invariant measure defined on (R,B).
If X and Y are independent and PY � λ, then for Z = X + Y , PZ � λ, and
the density function of Z w.r.t. λ is written as pZ(z) =

∫
pY (z − x) dPX(x).

Proof. Let A be any λ-measurable set. We have the following:

PZ(A) =

∫
1A(Z(ω)) dP (ω)

=

∫
1A(X(ω) + Y (ω)) dP (ω)

=

∫
1A(x+ y) dP(X,Y )(x, y) Change of variable

=

∫
1A(x+ y) d(PX × PY )(x, y) Proposition 1

=

∫∫
1A(x+ y) dPY (y) dPX(x) Fubini-Tonelli

=

∫∫
1A−x(y) dPY (y) dPX(x)

=

∫
PY (A− x) dPX(x)

If λ(A) = 0, then by translation-invariance, λ(A − x) = 0; then by absolute
continuity, PY (A − x) = 0. Hence PZ(A) =

∫
PY (A − x) dPX(x) = 0. And

therefore, PZ � λ.
To find the density pZ(z),

PZ(A) =

∫∫
1A(x+ y) dPY (y) dPX(x)

=

∫∫
1A(x+ y)pY (y) dλ(y) dPX(x) Density of PY

=

∫∫
1A(z)pY (z − x) d(λ ◦ f)(z) dPX(x) Change of variable y = f(z)

=

∫∫
1A(z)pY (z − x) dλ(z) dPX(x) Translation-invariance
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=

∫
A

∫
pY (z − x) dPX(x) dλ(z) Tonelli

Corollary 4.1. Any random variable X with independent Gaussian noise added
to it becomes absolutely continuous w.r.t. the Lebesgue measure and possesses a
density function.

Proof. By Remark 3.1 and the fact that Gaussian random variables are abso-
lutely continuous, the conclusion follows.

3 Case Study

In generative modeling that maximizes the model likelihood like variational
autoencoder (P Kingma and Welling, 2014), an independent Gaussian noise is
added to the model distribution:

X = fdecoder(Z) + ε , ε ∼ N (0, σ2I) .

such that the law of X given Z, the latent, possesses a density function, which
thus allows the model likelihood to be well-defined (Arjovsky and Bottou, 2017;
Arjovsky et al., 2017). This is true no matter what distribution fdecoder(Z)
follows. Even if the push-forward measure of fdecoder(Z) is already absolutely
continuous (which rarely is), adding independent Gaussian noise to it simplifies
the evaluation of its density. The downside, of course, is that the generated
images X look blurry, the characteristics of Gaussian variables in images.
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